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Abstract

We discuss the principle of minimum entropy production as proposed by Prigogine, providing two examples (heat conduction in a
fluid at rest and the combined shear flow and heat conduction in an incompressible fluid) for which the principle produces field equations
that do not agree with the balance equations of continuum mechanics. We have not been able to find any special assumption on the
temperature dependence on the phenomenological coefficients (such as thermal conductivity and dynamical viscosity) under which a gen-
eral agreement between standard balance equations and balance equations determined by the minimum entropy production principle can
be stated. A critical analysis of the theorem proof shows that the minimum entropy production of system in a stationary state cannot be
different from zero.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Variational principles occupy a prominent position in
the history of science, because they provide a rational
and elegant explanation of physical phenomena. Moreover,
since the 19th century they have had a tremendous impact
on engineering design, because they allow complex, multi-
variable problems to be solved by simple variational
calculus.

Among others, the so-called principle of minimum
entropy production rate is certainly the most debated
among scientists. The general statement of the minimum
entropy production principle reads: ‘‘A steady state has
the minimum rate of entropy production with respect to
other possible states with the same boundary conditions”.
In other words, the theorem of minimum entropy produc-
tion asserts that, under certain assumptions, the global
entropy production rate of a given system attains a mini-
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mum value when the processes in the system become sta-
tionary. As a special case, one finds the equilibrium
states, where entropy is maximum and its rate of produc-
tion becomes zero.

The earliest formulation of this principle is to be found
in Rayleigh’s least dissipation principle [1,2]; later, Onsager
[3] gave a proof based on his reciprocity relations (which
imply the hypotheses of local equilibrium and microscopic
reversibility), in the absence of magnetic fields or Coriolis
forces. However, this principle became famous principally
thanks to Prigogine [4–6], who derived the property of min-
imum entropy production for discontinuous systems (i.e.,
systems composed of several sub-systems, in which state
variables show discontinuous jumps passing from one
sub-system to another). In particular, Prigogine’s aim was
to extend the Le Chatelier–Braun principle to account for
irreversible processes in open systems [7]. An analogous
result applies to continuous systems [8]. The key aspect
of this work is that it contains a rigorous mathematical
proof, so that one should use the word ‘‘theorem” rather
than ‘‘principle”.
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Nomenclature

F function
J generalised thermodynamic flux
Js entropy flux
k thermal conductivity
L length
Lij Onsager phenomenological coefficient
p pressure
q heat flux
s entropy
t time
tij stress tensor
T temperature

u internal energy
v velocity component
V volume
X generalised thermodynamic force

Greek symbols

dij Kronecker symbol
k Lagrange multiplier
l viscosity
q density
r entropy production
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The impact of this work was huge, because it provided a
theoretical landscape where new concepts were born and
grown, such as the finite time thermodynamics [9–12], the
theory of dissipative structures [13] and more recently
Bejan’s constructal theory of organization in nature [14],
which are often erroneously thought to be straightforward
consequences of the minimum entropy production theorem.

However, the acceptance of Prigogine’s work in the sci-
entific community has always been controversial, and gave
rise to huge debates both in the scientific and in the non-sci-
entific literature, often raising strong criticism [15]. As a
matter of fact, despite the principle of minimum entropy
production contributed much to attract attention on non-
equilibrium thermodynamics, in a recent and comprehen-
sive review article it is simply ignored [16].

A natural weakness of the theory lies in one of the
hypotheses on which it is based: the fact that the entropy
production of a system is minimum in stationary states
only if the phenomenological coefficients are constant
implies that the overall gradients of the thermodynamic
parameters over the complete system must be sufficiently
small, but there are no general guidelines to establish
how small they should be. Furthermore, one can find situ-
ations of systems in a stationary state whose entropy pro-
duction is not minimum. Perhaps the most famous
example was given by Landauer [17], who after a general
discussion about the inadequacy of entropy in characteris-
ing stationary states, showed how this principle fails to cor-
rectly describe even the behavior of simple thermodynamic
systems such as electric resistances. Previously, Ziman [18]
had developed a variational principle for transport
processes that actually shows that entropy production is
maximum in the steady state.

In this paper, we analyze critically the minimum entropy
production theorem, describing in detail two examples for
which it does not agree with the equations of continuum
mechanics. Then, we consider the proof originally pro-
posed by Prigogine [4] for discontinuous systems, showing
that if the condition describing a stationary state is taken
into account correctly, the entropy production of a linear
dissipative system satisfying Onsager’s reciprocity relations
must be zero.

2. Field equations

To determine the basic fields of thermodynamics of irre-
versible processes we rely on the field equations based on
the mass, momentum, energy conservation principles.
The corresponding conservation laws, in the usual tensorial
form are

oq
ot
þ o

oxi
ðqviÞ ¼ 0

o

ot
ðqviÞ þ

o

oxj
ðqvivj � tijÞ ¼ 0

o

ot
ðquÞ þ o

oxi
ðquvi þ qiÞ ¼ tij

ovi

oxj

ð1Þ

where q is density, vi, tij and qi are the components of the
velocity vector, of the stress tensor and of the heat flux vec-
tor, respectively, and u is the internal energy. The entropy
balance is written as q_sþ o

oxi
ðJ i

sÞ ¼ r, with J i
s ¼

qi
T and

r ¼ � 1
T 2 qi

oT
oxi
þ 1

T thiji ovi
oxj

; T is the absolute temperature, J i
s

are the components of the entropy flux vector, r is the
(non-negative) density of entropy production, and thiji de-
notes the deviatoric stress. The global entropy production
is defined as: diS

dt ¼
R

V rdV , where V is the volume of the
system.

Let us restrict the discussion to an incompressible
Navier–Stokes–Fourier fluid for which we introduce the
following constitutive relations:

tij ¼ �pdij þ lðT Þ ovi

oxj
þ ovj

oxi

� �

qi ¼ �kðT Þ oT
oxi

u ¼ uðT Þ

ð2Þ

where p is the hydrodynamic pressure, l is the shear viscos-
ity, and k is the thermal conductivity. The combination of
the constitutive equations with the conservation equations
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provides a full set of equations for the basic fields of the
thermodynamics of irreversible processes. In steady state,
these equations reduce to
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where c ¼ du
dT is the specific heat. The density of entropy

production is given by:
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ð4Þ
3. One-dimensional heat conduction

Let us analyze the one-dimensional problem of station-
ary heat conduction in a fluid at rest, where the tempera-
ture field depends only on one spatial coordinate. This
case is significant because the analysis of transient conduc-
tion data may erroneously induce to believe that the mini-
mum entropy production principle is verified [19,20].

The continuity equation is identically satisfied, and the
momentum equation says that pressure is constant. With-
out loss of generality, the last of Eq. (3) can be written
under this form:

d

dT
lnðkÞ

� �
dT
dx

� �2

þ d2T
dx2
¼ 0 ð5Þ

Eq. (5) is the appropriate equation for the temperature
field, which can be solved for prescribed boundary values,
once the functional dependence of the thermal conductivity
on the temperature field is given.

Let us determine the same field equation as it can be
derived from the principle of minimum entropy produc-
tion. To do so, we formulate the following variational
problem: ‘‘find such a temperature distribution that fulfills
prescribed boundary conditions and minimizes the global
entropy production”, or diS

dt ¼
R

V
k

T 2
dT
dx

� �2
dV ¼ min. Setting:

F ¼ k
T 2

dT
dx

� �2
the Euler–Lagrange equation reads
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which can be reduced to

d
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ffiffiffi
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dT
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Eqs. (5) and (7) are equivalent if and only if the thermal
conductivity can be written as k ¼ L

T 2, where L is a constant.
This shows that the principle of minimum entropy pro-
duction is material-dependent. In particular, if we consider
the ‘‘linear case” defined by the linear (or linearised) Fou-
rier constitutive equation with constant thermal conductiv-
ity, the field equations for temperature obtained in the two
approaches are different. From this analysis one must con-
clude that in the problem there should be an open param-
eter, totally or at least partially determined by the
principle, introduced into the model under the form of a
phenomenological coefficient.

As a particular case, we observe that the minimum
entropy production principle leads to a contradiction with
the energy balance equation for the heat conduction pro-
cess through a plate assuming that the boundary surfaces
are kept at constant temperatures. In fact, the temperature
distribution resulting from the minimum entropy produc-

tion theorem is T ðxÞ ¼ T 0
T L
T 0

� 	x=L
, where L is the plate

thickness, while the temperature distribution determined
by solving the heat conduction equation, with the assump-
tion that surfaces are kept at constant temperatures, is
T ðxÞ ¼ T 0 þ ðT L � T 0Þðx=LÞ. The absolute error between
the two methods reduces to zero as the ratio between the
extreme temperatures approaches one, that is, when there
is no heat flux through the wall

lim
T L=T 0!1

DT
ðT L � T 0Þ

¼ lim
T L=T 0!1

x
L
þ 1� ðT L=T 0Þx=L

T L=T 0 � 1

 !
¼ 0 ð8Þ

This shows that the minimum entropy production principle
cannot be considered as a variational principle. More mod-
estly, it must be identified with an approximation method.
4. Shear flow

As a second example, we study the steady state shear
flow with heat conduction of incompressible fluids. We
assume that the velocity field vi = (0,v(x), 0) is unidirec-
tional and depends on a single spatial coordinate, as well
as the temperature field T = T(x).

The first of Eq. (3) is identically satisfied, while the sec-
ond one requires that the pressure is a linear function of the
spatial coordinate p = p0 + p0x. The momentum balance
equation reads

dl
dT

dT
dx

dv
dx
þ l

d2v
dx2
¼ p0 ð9Þ

and the energy equation reduces to

d
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þ l

k
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� �2

¼ 0 ð10Þ

The model defined by Eqs. (9) and (10) can be solved for
prescribed boundary values of the velocity and temperature
fields once the functional dependences of the thermal con-
ductivity and of the shear viscosity on the temperature field
are given.
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We compare now these field equations with the equa-
tions obtained from the minimum entropy production
principle according to the variational approach. Setting

F ¼ k
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the Euler–Lagrange equations are
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We have introduced the Lagrange multiplier �2k(xi) to
take into account the fluid incompressibility. The Euler–
Lagrange equations (12) and (13) can be re-written as
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Under the assumptions made above for the velocity and
temperature fields, Eq. (14) reduces to the form
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Eq. (15) says that the Lagrange multiplier must depend lin-
early on the spatial coordinate: k = k0 + k0x, with constant
k0 and k0, and reduces to

d

dT
l
T

� 	� �
dT
dx

dv
dx
þ l

T
d2v
dx2
¼ k0 ð17Þ

The comparison of Eqs. (9) and (10) with Eqs. (16) and (17)
shows that the equations obtained from the minimum en-
tropy production principle do not agree with the standard
thermodynamic balance equations.

We have not been able to find any special assumptions
about the functional dependence of the thermal conductiv-
ity and shear viscosity on temperature which make the two
methods agree with each other. In particular, even the
so-called ‘‘linear case” does not make the results of the
minimum entropy production principle and the balance
equations compatible.

We also note that both Eqs. (9) and (10) and Eqs. (16)
and (17) contain an arbitrary constant. However, in Eqs.
(9) and (10) the constant represents the streamwise pressure
gradient, while in Eqs. (16) and (17) it takes into account
the incompressibility condition.

5. Analysis of the theorem proof

To find a reason for the results obtained above, one can
analyse the proof of the minimum entropy production the-
orem originally proposed by Prigogine [4] for discontinu-
ous systems described by N state variables, corresponding
to N fluxes Jk (k = 1,2, . . . ,N). According to the formalism
of irreversible thermodynamics the entropy production is
given by

diS
dt
¼
XN

k¼1

J kX k > 0 ð18Þ

Fluxes are related to generalised thermodynamic forces
through the phenomenological coefficients

J k ¼
XN

j¼1

LkjX j ð19Þ

where Lkj = Ljk due to Onsager’s reciprocity relations.
When the system is at equilibrium with respect to one of
its state variables, the corresponding flux vanishes

XN

j¼1

LkjX j ¼ 0 ð20Þ

and finally one finds that the entropy production is steady
with respect to the thermodynamic force generating the
flux

o

oX k

diS
dt

� �
¼
XN

j¼1

ðLkj þ LjkÞX j ¼ 2
XN

j¼1

LkjX j ¼ 0 ð21Þ

However, using Eq. (18) to calculate the derivative in Eq.
(21) is not appropriate: in fact, Eq. (20) provides an addi-
tional relation among generalised thermodynamic forces,
which changes the functional dependence of entropy pro-
duction on thermodynamic forces, and therefore it should
be taken into account before calculating the derivative.

As a simple example, one can consider a process consist-
ing in the simultaneous mass and energy transfer between
two phases at different temperatures, described by the
equation

diS
dt
¼ J 1X 1 þ J 2X 2 > 0 ð22Þ

and by the phenomenological relations
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J 1 ¼ L11X 1 þ L12X 2 ð23Þ
J 2 ¼ L21X 1 þ L22X 2 ð24Þ

with L12 = L21. At a stationary state

J 2 ¼ L21X 1 þ L22X 2 ¼ 0 ð25Þ
and according to Eq. (22)

diS
dt
¼ L11X 2

1 þ 2L21X 1X 2 þ L22X 2
2 > 0 ð26Þ

Following the classical procedure one would find that

o

oX 2

diS
dt

� �
X 1

¼ 2ðL21X 1 þ L22X 2Þ ¼ 2J 2 ¼ 0 ð27Þ

so that the two conditions J2 = 0 and o
oX 2

diS
dt

� �
X 1
¼ 0 are

completely equivalent.
On the other hand, if one takes into account Eq. (25),

the entropy production of the system at steady state with
respect to the generalised flux J2 is different from Eq.
(26); moreover, in general the entropy production is non-
negative (and not just strictly positive), so that Eq. (26)
should be more correctly re-written as

diS
dt
¼ L11X 2

1 þ 2L21X 1X 2 þ L22X 2
2 ¼

L22ðL11L22 � L2
21Þ

L2
21

X 2
2 P 0

ð28Þ
Thus, Eq. (27) must be replaced by

o

oX 2

diS
dt

� �
X 1

¼ 2
L22ðL11L22 � L2

21Þ
L2

21

X 2 ð29Þ

According to Eq. (29) the two conditions J2 = 0 and
o

oX 2
ðdiS

dt ÞX 1
¼ 0 are not completely equivalent. In fact, for

L22 > 0 and L21 6¼ 0 one finds

L11L22 � L2
21 ¼ 0 ð30Þ

According to a well-known theorem of linear algebra, to
ensure the existence of a non-trivial solution of Eqs. (23)
and (24) with the reciprocity relations satisfied, the system
must obey the following conditions:

J 1 ¼ 0 and J 2 ¼ 0 ð31Þ
As a consequence of Eq. (31), the entropy production in a
stationary state of a linear dissipative system is minimum if
and only if it equals zero.

Applying a similar procedure to a system with N vari-
ables, and taking into account the reciprocity relations,
one finds that the minimizing the entropy production with
respect to thermodynamic forces lowers the rank of the
matrix of phenomenological coefficients (det Lik � 0), so
that all generalised fluxes must be zero.

6. Conclusions

The principle of minimum entropy production, which is
commonly used to characterise the stationary states of lin-
ear dissipative systems obeying Onsager’s reciprocity rela-
tions, has been reviewed critically. The rigorous analysis
of two examples (the heat conduction in a fluid at rest
and the combined shear flow and heat conduction in an
incompressible fluid) based on the comparison of the theo-
rem’s results with those of the field equations of continuum
mechanics shows that this theorem cannot be considered as
a general variational principle, but at best an approxima-
tion method, which converges to the exact solution as the
system converges to equilibrium.

The theorem proof, as formulated by Prigogine, leads to
an erroneous conclusion because the condition of stationary
state is not taken into account correctly in the expression
of entropy production. When the additional relationship
among generalised thermodynamic forces is introduced into
the expression of the entropy production, the theorem shows
that for systems in a stationary state the entropy production
must be zero.

In conclusion, one can formulate the following proposi-
tion: ‘‘Provided that the Onsager reciprocal relations are
satisfied, the minimum entropy production theorem as
formulated by Prigogine is valid only when generalised
thermodynamics fluxes are simultaneously equal to zero
at non zero values of the generalised thermodynamics
forces”.
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